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Abstract-The constitutive equation proposed in the previous papers of this series is applied
to theoretical determination ofFLD (forming limit-strain diagram) of metal sheets. The condition
oflocalized necking due to Storen and Rice is derived by making use ofthis constitutive equation
and the formula of limit-strain is obtained on the basis of this localized necking condition as
the breakage condition. The formula is also formu~ted for the case where normal anisotropy
is taken into account by introducing r-value and/or X-value. Then FLDs of several metal sheets
are determined and compared with the corresponding experimental data to confirm a fairly good
agreement. It is also emphasized that the value of80 (= the half angle of the pointwise-vertexed
subsequent loading surface at the loading point) is within the range 700 _890 even at the onset
of breakage throughout all materials tested here, and therefore it would be very difficult to
check experimentally the vertex formation by the usual method of determination of subsequent
yield surface at far smaller strain level as reported so far.

1. INTRODUCTION

In the previous two papers of this series of work[l, 2], a class of plastic constitutive
equations with vertex effect was proposed and developed, and its simplest form was
examined by several numerical calculations. In this paper (Part III), this constitutive
equation is applied to theoretical determination of the forming limit diagram (FLD) of
several ductile metal sheets specifically for the case where proportional loading or
straining is applied. And comparison of the theoretical results with the experimental
results is also presented.

In the past, because of its practical importance in press-working processes, the
forming limit (breakage) strain of ductible metal sheets has been investigated both
experimentally and theoretically by many workers. For example, Swift[3] proposed an
idea to determine it for the case of biaxial stretching, which is now well known as Swift
instability condition. Hill[4] also proposed the similar idea and called it as the condition
of diffuse necking. Diffuse necking is the in-plane necking phenomenon which occurs
in a sheet strip under uniaxial tension (say) at the maximum load, and is now understood
as a bifurcation phenomenon which precedes breakage. He also proposed another in­
stability condition-local necking condition-which is accompanied with severe local
thinning along a narrow band with width of about sheet thickness and thus leads im­
mediate breakage. However, his local necking condition makes sense only for positive
strain ratio n for a proportional loading, where n = E2/El; El, E2 = major and minor
planar strains. Therefore, the theoretical FLD for proportional loadings was determined
on the basis of two instability conditions-Leo diffuse necking condition for n > 0 and
local necking condition for n < O. This method is, of course, not very exact even in a
logical sense because diffuse necking does not mean breakage. Rather recently Mar­
ciniak and Kuczynski[5] proposed to introduce the idea of initial impeIfection of the
material to overcome this difficulty (M-K theory or model). Since then this model was
used to determine FLD for n > 0[6-8]. However, FLD determined by this model is
apt to show a too steep upward slope over the range from n = 0 to n = 1, and evaluation
of the value of the imperfection factor f is not necessarily clear and appropriate. More­
over, FLD for n < 0 is not easily determined, and even FLD for n 5ii: 0 must be obtained
by a numerical method. Storen and Rice[9] proposed a theoretical method to determine
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the local necking condition for a perfect sheet (S-R theory or model), which is now
understood to be a condition for bifurcation in a local mode similar to the shear-band­
type bifurcation in a plane-strain block. Their theory requires the plastic constitutive
equation to have one-to-one correspondence between plastic strain increment dEP and
stress increment dO" to get reasonable limiting strain in the range of n > O. They used
the incremental form of lz-deformation theory in its hypoelastic version. However, a
comparison of their theory with the experiments verifies a necessity of improvement
of the constitutive equation.

Here we make use of our plastic constitutive equation to determine FLDs of several
commercial metal sheets for proportional loadings adopting the S-R's local necking
condition as the breakage condition. Theoretical FLDs for nonproportional loadings
without unloading and theoretical secondary FLDs (FLDs of prestrained metal sheets)
will be presented in the following work of this series (Part IV).

2. CONSTITUTIVE EQUATION

The constitutive equation used here has the following expression which was de­
veloped and discussed in Part 11[2]:

de = (1/2G*) dT + (bl2rr hri)T da,

tr dE = (1/3K) tr dO" ,

where incompressible plasticity is assumed, and

dE = strain increment,

(1)

de = dE - (1/3) tr dE; (tr = trace symbol),

dO" = increment of Cauchy stress 0",

T = 0" - (1/3) tr 0",

dT = dT - dwT + T dw = Jaumann increment of T,

dw = increment of rigid-body rotation,

a = v372 [tr (T2 )] 112,

da = v372 [tr (dT2)P12, (# da)

1/G* = 1/G + (P(8))IHo

1/ hri = (P(8))1ho,

P(8) = a + b cos 8,

(P) = P for P > 0, (P) = 0 for P ~ 0,

cos 8 = tr (T dT)/{[tr (T2)][tr (dT2 )]}1/2,

a = hoiHo = cos 8 0 /(1 + cos 8 0 ),

b = 1 - a,

ho = (1/3)-[slope of (a-e) curve for a proportional loading],

e = Jde P ; de P = Vili [tr deP2)] 112,

de P = plastic strain increment,

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

and the half angle 8 0 of the cone of the subsequent loading surface at the loading point



is given as
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Fig. 1. An element of sheet metal with localized necking band.

8 0 = ("!T/2) - pe2
,
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(10)

where p is a material constant. If p = 0, then 8 0 is consistently equal to ("!T/2), which
means that no vertex forms with deformation and eqn (1) reduces to the classical h­
flow theory. ho and Ho are the instantaneous work-hardening and vertex-hardening
rate, respectively. G and K are the elastic shear-rigidity and bulk modulus, respectively.
If 8 for subsequent <IT satisfiies the following inequality,

o~ 8 < 8 max ,

8 max = COS-I( - alb),
(11)

then plastic deformation continues for this stress increment. The inverse relation of
eqn (1) is also discussed in detail in Part II.

Now let us consider a rectangular element of metal sheet with thickness t subjected
to biaxial stretching as illustrated in Fig. 1. 0"1 is the major principal stress and 0"2 is
the minor one, respectively, where 0"1 > 0 and Im I~ 1, m = 0"2/0"1 (stress ratio). Here
plane stress state is assumed. Introducing the following denotations:

t = dT/dO" ,

E = dE/de; ~ = dEldO" ,

de = V273 [tr (dE2)j1/2,

the constitutive equation reduces to the following expressions:

(12)

ill = (11120'Ho)b[2(20"1 - 0"2)<YT - (20"2 - 0"1)0-~ + (50"2 - 40"do-I0-2]

+ [(1/3G') + (11120'2ho)b2(20"1 - 0"2?]0-1 + [-(l/6G')

+ (1/120'2ho)b2(20"1 - 0"2)(20"2 - 0"1)]0-2 + (1/60'ho)ab(20"1 - 0"2), (13)

i22 = (1I120'Ho)b{2(20"2 - O"do-~ - (20"1 - 0"2)0-1 + (50"1 - 40"2)0-20-1

+ [(1/3G') + (1/120'2ho)b2(20"2 - 0"1?]0-2 + [-(1I6G')

+ (1/120'2ho)b2(20"2 - 0"1)(20"1 - 0"2)]0-1 + (l/60'ho)ab(20"2 - 0"1), (14)

where plastic loading state is assumed, and

- 0 2 0 2 0 0 0 2 1/2
dO" = (dO"l + d0"2 - dO"l d0"2 + 3 dTu) ,

0' = (O"t + O"~ - 0"10"2)112,
(16)
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and lIG' = (1/G) + (ho/H'5), and the existence OfTI2 is allowed at the moment under
consideration, though T12 is set equal to O.

3. LOCAL NECKING CONDITION

Suppose that, after proportional deformation ofa certain magnitude, discontinuities
in velocity gradient v,; and stress rate 0- have taken place along a narrow band of breadth
of about sheet thickness as illustrated in Fig. 1. This is the so-called localized bifurcation
band[9]. We denote the unit normal vector to this band by g(gl' g2). Marking superfixes
+ and - to the quantities outside and inside the local necking band, respectively, we
denote the discontinuity between them by .:1X = X + - X - , say. Then we obtain the
following relations from eqns (13)-(15):

0) ( VI.I )0.:1 V22 ,
a33 (VI,2 + v2.d

(17)

where V;.) = d(au;lax})/da, Le. v du/da, where u denotes displacement vector, and

all = ai2/D*,

a22 = ail/D*,

- ai21D*,

(18)

0* C+ + a])l2, o * C+ + a 2)12 , 0* (Tii + Tu)/2, (20)al al a2 a2 T12 =

iii hlai, ii2 = hlaz., ii3 = h l(2a 2 - aI), ii4 = h l(2ai - a2);

bl (1I3G') + h2a;2, b2 -(1/6G') + h2a;a2, (21)

b3 (1/3G') + h2a!;?, dl 3ii l , d2 = 3th; a! T;,

hI = b/(4a H o), h2 = 3b2/(4a2ho) . (22)

On the other hand, we know the following relations which are directly derived
from the relation between nominal stress rate s = ds/da and Cauchy stress rate 0-,
where s = nominal stress:

l1al - a ll1vl,l, I1S12 = I1T12 - &I1V1,2 + TI1V2.1,

I1T21 - TI1VI.2 - &I1V2.1, I1h2 = 11<T2 - a211v2.2

where & = (al + a2)/2 and T = (al - a2)/2.
Now we set as follows:

(23)

(i,j = 1,2), (24)

where'Y = ('YI, 'Y2) is the infinitesimal shear along the local neck band. Then we obtain
the following relations from eqns (23), (24) and (17):

I1s 11 = 'YI(all - al)gl + 'Y2a 12g2,

I1S 12 = 'YI{a3Ig1 + (a33 - &)g2} + 'Y2[(a33 + T)gl + a32g2] ,

I1S21 = 'YI{a3Ig1 + (a33 - T)g2} + 'Y2[(a33 - &)gl + a32g2]

I1S22 = 'Yla2lgl + 'Y2(a22 - a2)g2.

(25)
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The balance equation across the local neck band is written as follows:

1135

(26)

From this equation together with eqn (25), we obtain the following two equations:

(27)

This is a system of homogeneous linear equations with respect to "'II and "'12.
As we understand from eqn (24), the condition for the onset of local necking is

equivalent to that for the existence of non·zero "'("'II, "'12). For that, the determinant of
the coefficient matrix with respect to ("'II, "'12) should be equal to O. Therefore we obtain
the following equation as the condition for the onset of local necking type bifurcation
or breakage:

(all - O"I)(a33 + f)gt + {-a3I(al2 - 0"1) + a32(all - O"I)}gig2

+ [(all - O'd(a22 - 0"2) + (a~3 - f2)

- (al2 + a33 - o)(a21 + a33 - 6)]grg~

+ [a3I(a22 - 0"2) - a32(a21 - 0"2)]gIg~ + (a22 - 0"2)(a33 - or)g~ = O. (28)

This is a fourth-order algebraic equation with respect to (gi Ig2). Ifthis equation captures
a real root, then a localized necking band, or two such bands because of symmetry,
will form along the direction whose unit normal vector is g, and the sheet will break
along the band.

For proportional loading, the externally controlled 1'(2 is always kept O. In this
case, in eqn (19), a~'t = a;'2 = 0, and thus for eqn (18) a31 = a32 = O. Therefore eqn
(28) reduces to the following expression:

(all - O'd(a33 + f)gt + [(all - O"I)(a22 - 0"2) + (a~3 - f2)

- (aI2 + a33 - 6)(a21 + a33 - 6)]grg~ + (a22 - 0"2)(a33 - f)g~ = O. (29)

Denoting the stress ratio by m as follows,

(proportional loading) , (30)

we finally obtain the governing equation expressed in eqn (29) in the following expres­
sions:

Agt + Cgrg~ + Eg~ = 0, (31)

A = (all - 0"1)(a33 + or), E = (a22 - 0"2)(a33 - or), (32)

C = (all - O'd(a22 - 0"2) + (a~3 - or2) - (al2 + a33 - 6)2,

all = (l/3D*){(1/G) + (l/Ro) + [b(1 - 2m)2/4ho(1 - m + m2)]),

a22 = (1/3D*){(1/G) + (1IRo) + [b(2 - m)2/4ho(l - m + m2)]},

aI2 = a21 = (l/6D*)[(l/G) + (lIRo) + {b(l - 2m)(2 - m)/2ho(l - m + m2)}], (33)

a33 = l/[(lIG) + (lIRo)]; D* = (l/12)[(1/G) + (llho)][(1/G) + (lIRo)]
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If a2 < al in Fig. 1, then generally

(34)

holds. Therefore E =l= 0 is met throughout deformation, because eqn (31) possesses the
root of gllg2 = 0 if E = O. And it is easily found that at early stage of deformation E
> 0 is met. Therefore E is always positive. Then, as easily found, eqn (31) possesses
the real root(s) if

A = 0, or A ~ 0 and e ~ - 2YAE (35)

is satisfied. Therefore the critical condition for the onset of local necking or breakage
is given by the following equations:

A = 0; or e = - 2YAE. (36)

At early stage of deformation, A > 0 and e > - 2YAE hold. When deformation goes,
either of the two equations in eqn (36) is met at a certain stage of deformation and the
sheet breaks. Which one of the two in eqn (36) precedes the other depends on the
stress ratio m, where Im I ~ 1. There exists the value of m, mo say, for which both
of the two equations in eqn (36) are satified at the same time. It is easily found that
mo is the real root of the following equation:

(1 - mo){4(1 - mo + miD + h(2mo - 1)(2mo + 5) - G*(1 - mo)

x [4(1 - mo + m5) + h(2mo - 1)2f/2(1 - mo + m5)} = 0, (37)

where

G* = 1/{a33[(1/G) + (l/ho)]). (38)

Equation (37) has two real roots for Imo I ~ I, one of which is of course equal to 1.
Denoting the other root by m*, we can find that

o< m* ~ (1/2), (39)

and m* tends to (1/2) for a = hoiH o - O. In fact, m* is generally very close to (1/2)
which is coincident with m for plane-strain state of E22 = O. Eventually the critical
condition for the onset of breakage is summed up as follows:

A = 0 for m* ~ m ~ I,

e = - 2yA:E for - 1 ~ m < m*.
(40)

When A becomes equal to 0, from eqn (31), g2 gets equal to 0, which means the
local neck band lies in parallel with the 2-axis, i.e. tIJ = 0 in Fig. 1, where the direction
of the neck band is undefinite for m = I, because the critical condition reduces to A
= e = E = 0 for m = 1. On the other hand, for m = m*, A = e = 0 and E =\= 0
hold at the critical state and thus g2 = O. And, for - 1 ~ m < m*, the direction of the
local neck band is determined from eqns (31) and (40». Eventually we have the following
formulae:

tIJ = 0, e = 'Tr/2

tIJ = tan-I (~)

for m* ~ m < 1,

for -1 ~ m < m*.

(41 )

(42)

Now we can derive the breakage condition in its concrete form from eqns (32),
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(33), (39) and (40) as follows:

(i) m* ~ m ~ l;

1137

al[(1/G) + (1/ho)] = 40 + b(2m - l)2/{4hoO - m + m2)[(1/G) + (l/Ho)]}). (43)

(ii) - 1 ~ m < m*;

fl = 18a33b/[ho(l - m + m2)] - 2a*2{l + a33 b(2m - l)2/[4ho(1 - m + m2]}

x {l + a33b(2 - mf/[4ho(l - m + m2»},

f2 = 3a33 b(1 + m)/{2ho(1 - m + m2)} - (a*l2){l + a33 b(2 - m)

x (2m - l)/[4ho(1 - m + m2 )]}

- (a*2/4)(1 + m){l + a33 b(4m2 - 7m + 4)/[4ho(l - m + m2)]),

f3:; {a33 b/[4ho(l- m + m2]H9 - 3(1 - m + m2)a*2

+ (1 + m)[3a* - (3/4)(1 - m)2a *3

+ (3/16)(1 - m)2(l + m)a*4]

+ {a 33 b(1 + m)/[ho(1 - m + m 2 )]}'[9(l + m)

- (3/2)a*(2 - m)(2m - 1) - (3/4)a*2(1 + m)(4m2 - 7m + 4)

+ (3/8)a*3(1 - m)1(2 - m)(2m - 1)

+ (3/16)a*4(l - mf(1 + m)(1 - m + m2)]),

(44)

By making use of eqns (43) and (44), we can calculate and draw the FLD (forming
limit-strain diagram; or FLC, forming limit-strain curve) for arbitrary metal sheet sub­
jected to proportional loadings.

In the following numerical examples, we use the N-th power hardening law for
materials tested. Then we can use the following approximate relations:

(g: some factor).

ho '=; N (Ci/3"E),

fj/Ho '=; 3g"E,

Ho '=; (1/3g) (CilE),

Ci/ho !::::; 3"E/N

Ho/ho !::::; l/gN, (45)

And the strain ratio n = E2/EI has the following relation with m:

m = (2n + 1)/(2 + n),

and thus, corresponding to m*, we can define n* = (2m* - 1)/(2 - m*) which follows
from this equation, where EI = E1l and Ez = EZ2.

Finally, we have assumed the Mises material extended to that with vertex effect
so far. We can derive various formulae for the material with anisotropy expressed by
Hill's quadratic yield function[lO] or by the author's fourth-order yield function[11] by
the similar procedure as above as well.

SAS JI:II-£
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4. FORMULAE FOR - 1 ~ m < m*

Neglecting (1/G) in comparison with (l/ho), from eqn (42), we obtain the following
formula for the angle \jI:

\jI = tan-)(~),

A/E = [3(Ho/ho)n2 + (2 + n)2 - (0')/ho)(1 + n + n2)]

{3(Ho/ho) + (1 + 2n)2 - (O'dho)[(2n + 1)/(2 + n)](l + n + n2)}

[2(2 + n) + (O'I/Ho)(l - n)]
x .=.......;------------------"[2(2 + n) - (O't/Ho)(l - n)] (46)

Particularly, for the materials with N-th power hardening law, we have

A/E = [(3/gN)n
2 + (2 + n? - (2/N)(2 + n)(1 + n + n2)ed

[(3/gN) + (1 + 2n)2 - (2/N)(1 + 2n)(1 + n + n2)ed

[l + g(1 - n)edx .
[ I - g(1 - n)ed ' el = ell. (47)

(48)

Figure 2 (numerical example), illustrates the relation between e = ('!T/2) - \jI and
N-value for n = -0.5 (uniaxial tension) and -1 (tension-compression) calculated from
eqn (47), where, for convenience of comparison with S-R's theory, the factor g is kept
to be 0.5, which means the angle 8 0 (= the half angle of the point-wise vertexed
subsequent loading surface at the loading point) is kept constant, though this assumption
is not compatible with eqn (10). We should note that S-R's curve corresponds to that
for g = 1[9]. Hill's theory[4] gives constant eas illustrated in the figure. S-R's curves
show a too much variation in e. Therefore we can say that the value of g is generally
between 0 and 1. [Note that, if eqn (10) is adopted, gN = cos 8 0 /(1 + cos 8 0 ) ~ pe2

/

(1 + pe2
), and thus g is generally a variable.]

Next, from eqn (44), we can obtain the following formulae of the limiting major
strain (edcr:

(i) m = -1 (n = -I);

. 3h - 0'*2[1 + (3h/4)f

(edcr/
N

:::;::: _ (0'*/2)[1 - (3h/4)] + j[(3h/4)(1 - 0'*2)] ,

h * (1/gN) - 1, 0'* ~ 2ge); et = (et)cr'

-1

....... --- --. .......
'--

'--

""~
~ '-....-1

h I.. _._~~
t -----5 &R

- present theory; 9=0.5
n =-1/2------------- __ __. -112

----__...... -1
._-_._-_.~---

'---..::.)/2
~

"

..I

54°41:

50

a
N

0.5

Fig. 2. Relation between N-value and direction of localized necking band (calculation).
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(ii) m := 0 (n := - 0.5);

. 6h - (1/6)0'*z(1 + h) (4 + h)
(et)cr/N =7 _ _ (1/4){6h - 0'*(2 - h) - O'*z(1 + ii~ ,

+ j {(3/4)h(l + h)[3 + 0'* - 0'*2 - (1/4)0'*3 + (1/16)0'* ]) (49)

h *' (l/gN) - 1, 0'* = 3gEt;

We should note that both of these expressions involve (et)cr on both sides and thus
these are not the explicit formulae of it. These will be used in the numerical examples
given below.

5. FORMULAE OF LIMITING STRAIN FOR m* ~ m ~ 1

By making use of eqn (43), we can derive the following formulae of the limiting
major strain (et)cr as the functions of strain ratio n.

5.1 Formulae for the case of constant 8 0

This case is equivalent to that where g is kept constant.
(i) Mises material with g = 1:

(50)

This is coincident with the formula due to S-R's theory or Hill's local necking condition
with Jrdeformation theory[9].

(ii) Material with normal anisotropy i': This is the case where anisotropy ex­
pressed by Hill's quadratic yield function is considered with the assumption of in-plane
isotropy[lO], where r denotes the in-plane average of r-value which is the ratio (breadth
strain)/(thickness strain) in uniaxial tensile test and usually considered constant with
deformation.

(edcr *' (N/2)«2 + an){2 + [(2a - 1) + (1 - a)gN]n}

+ (4 - a2)n2/gN)/[(2 + an)(1 + n + n2)], (51)

a = 2,/(1 + r).

(iii) Material with normal anisotropy i' and X: This is the case where anisotropy
expressed by the author's fourth-order yield function is considered with the assumption
ofin-plane isotropy[11], where Xdenotes the ratio (yield strength for equibiaxial tension
O'b)/(in-plane average of yield strength for uniaxial tension O'u) at the same level of
plastic work.

(Et)cr *' [4NMtM/F(m)][1 + (1/8)(1 - gN)(2m - 1)(Mi/M)

+ (l/16gN)(1 - gN)zM;z/jM3],

A z = -4r1(1 + r), A3 = (l/X4 ) - 2(1 + A z),

M = 1 + m4 + Az(m + m3
) + A)mz,

Mt = 4 + 3Azm + 2A3mz + Azm3
,

~=~+~m+~~+~, ~

F(m) = (16 + 4Az + A~)(1 + m6)

+ (24Az + 3A~ + 4AzA 3 + 8A3)(m + m') + (12Az + 15A~

+ 8AzA3 + 4Aj + 16A3)(m2 + m4
)

+ (16 + 16Az + 10A~ + 24AzA 3 + 4Aj)m3
,

n = Mi/Mi.
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5.2 Formulae for the case where 8 0 is variable with deformation
Two cases are considered, one of which is that where 8 0 is given by eqn (10), and

the other is that where the loading surface possesses a certain amount of initial vertex
which may represent a certain ambiguity of initial yielding which is usually common
in mild-quality metal sheets. Only Mises material with vertex effect is considered.

(i) 8 0 = (Tr/2) - pe?; gN ~ pE: 2 /(1 + pE: 2
):

X 3 - bx2 - c' = 0,

b = 2N/(2 + n), c' = 2.25Nn2/[2p(2 + n)(1 + n + n2)2], (53)

p ~ 0.04167N/(X1 - 0.6667Nx1) , XI = [(EI)cr]n=l.

(ii) 8 0

(Edcr = x, X 3 - bx2 + ex - c = 0,

b = 2N/(2 + n), e = 0.750 cot l/Jo/[p(1 + n + n2
)],

c =: 0.750N{3n2 + cos l/Jo [3n2 + (2 + n)2]}/{p sin l/Jo{2(2 + n)(1 + n + n2)2]), (54)

p ~ [0.01389N(3 cosec l/Jo + 12 cot l/Jo) - 0.25 cot l/JoX.]/(X1 - 0.6667Nx1),

cos l/Jo = 0.5N/(1 - 0.5N), (say),

where, for convenience, l/Jo is given as that for 8 0 which is calculated by putting g
0.5.

In the above two formulae (53) and (54), the newly introduced material constant
p in our plastic constitutive equation (1) is determined in the manner that the theoretical
value of (Edcr for m = n =: 1 is coincident with that by the experiment. Of course,
there may exist other various methods to determine p other than this method.

6. EXAMPLES OF FLD

6.1 FLD for constant g
Figure 3 illustrates examples of FLD for N = 0.5 and 0.22 with constant g cal­

culated from eqns (50)-(52), where N = 0.22 represents a kind of rimmed steel sheet
at hand.

N = 0.5

0.5 1........0;:;::::::::--

o

Q ....experiment
(rimmed steel:
N=0.22, f=l.2, ><=1.21

0.5

Fig. 3. Numerical example of FLD (constant vertex angle). N = 0.5:.J-isotropy with g =
0.5; 2-normal anisotropy with fourth-order yield function, r.: 2.0, X = 1.0, g = 0.5; 3­
normal anisotropy with fourth-order yield function, r = 1.0, X = 1.5, g = 0.5; 4-isotropy
with..£ = 1.0 (S-R curve). N = 0.22; I-normal anisotropy with fourth-order yield function,
r = X = 1.2, g = 0.7t. 2-S-R curve; 3-normal anisotropy with quadratic yield function, r
= 1.2, g = 1.0 (N, r, X are measured values of a rimmed steel).
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0.2
(l - experimentals
\_J

killed steel:
N=0.259,r=1.81, )(=1.28
(N'=0.333)

-0.2 o 0.2 0.4

Fig. 4. Theoretical FLDs and experimentals, a killed steel (KS). 1-00 = 1/10 - p£2, 1/10 = 78°
29', p = 0.5; 2-0'L= (7f/2) - pe2

, p = 0.5; 3-normal anisotropy with fourth-order yield
function, r = 1.81, X = 1.28, g = 0.5; 4-S-R curve; 5-normal anisotropy with quadratic
yield function, r = 1.81, g = 0.5 (N' is used for the curve I instead of N).

From the curves for N = 0.5, it is found that the effect of r is little, and that X
greater than unity raise the limiting strain for the strain ratio between 0 and 1. A defect
of FLD due to S-R theory is that it is apt to give a too low value of the limiting strain
for the same range of strain ratio. Therefore, we can say that it may be one method
to improve theoretical FLD to take X into consideration. Of course, as seen in the
figure, the effect of the value of g is most prominent.

All the theoretical curves for N = 0.22 locate at the lower site than the experimental
plots which are the averages of the scattering experimental data shown later in Fig. 5.

6.2 FLDs of various commercial metal sheets
The author and co-workers[12] reported in another paper FLDs of various com­

mercial metal sheets such as an aluminium-killed steel (KS), a rimmed steel (RS), soft
aluminium (AI-O), half-hard aluminium (AI-IH), a quarter-hard copper (Cu-1H), and a

W

O.4(
i

w UiL:d;~?=:..-T---~7

6

rimmed steel:
N:O.22, r:X: 1.2
(N'= 0.34)

o 0.2 0.4

Fig. 5. Thoretical FLDs and exp£.rimentals, a rimmed steel (RS). I-normal anisotropy with
fourth-order yield function, r = X = 1.2, g = 0.523; 2-00 = 1/10 -y, 1/10 = 78° II', p =
0.1365; 3-normal anisotropy with fourth-order yield function, ;: = X = 1.2, g = 0.75 (N'
instead of N is used for the curves 1,2 and 3); 4-the same as 3 except N; 5-S-R curve; 6­
normal anisotropy with quadratic yield function; r = 1.2, g = 1.0; 7-00 = (7f/2) - p£2, p =
0.195.
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-0.2

0.1

o

aluminium-O:
N=0.266, ;'=0.845,
)(=1.11, (N'=Nl

0.2 0.4

Fig. 6. Theoretical FLDs and experimental!!... a soft aluminium (Ai-O). I-normal anisotropy
with fourth-order yield function, r = 0.845, X = 1.11, g = 0.4; 2-the same as 1 except g =
0.5; 3-60 = (7r/2) - pE2, p = 0.667; 4-the same as 1 except g = 0.75; 5-normal anisotropy
with quadratic yield function, r = 0.845, g = 1.0; 6-S-R curve.

quarter-hard (60/40) brass (Bs-!H), with thickness of 0.8 mm. They all have the ex­
perimental plots both in the range E2 ~ EI and E2 ~ EI because of in-plane anisotropy,
and a considerable amount of scattering of them. They are replotted in Figs. 4-9 in
the manner that all the plots in the range E2 > EI are shifted to the corresponding
positions in the range E2 ~ EI neglecting in-plane anisotropy, and all the plots so obtained
are encircled by dotted lines to show their scattering feature.

On the other hand, the corresponding theoretical FLDs are also drawn in each
figure for various possible conditions noted below the figures. The experimental data
in Fig. 10 are replotted from Tadros and Mellor's paper[13] which are for a soft (70/
30) brass (Bs-O).

Now the theoretical limiting strain (Edcr for n = 0 (Le. plane-strain state) is equal
to the value of N itself for all the formulae (51)-(54). However, N-values adopted here
are all determined by uniaxial tensile test taking the in-plane averages. And the range
of strain in determination of N is rather small when it is compared with the limiting
strain, especially in the range of 0 ~ n ~ 1. Therefore the adopted value of N is not

c',-
-'\\,-
'\, ,
\j

3

0.2

0.1

aluminium-t H:

N=0048,;' =1.105,
)( =1.15, (N'=0.024)

0.2

Fig. 7. Theoretical FLDs and experimentals, a half-hard aluminium (Ai-iH). 1-80 = 1110 ­

pE2, I!Io = 88° 35', p = 0.0602; 2-isotropy with g = 0.7716 (60 = 87° 48'); 4-60 = 1110 ­

pE2, 1110 = 89" 18', p = 0.02472 (N' instead of N is used for the curve 4); 3-S-R curve.
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copper-tH:

N=0.284, r=0.74,
X=1.49, (N' =0.321)

\ \
\ \

\ \
\ \

\ '
\ \
',j

-0.2

0.4

0.2

0.2

,-,, ,
, I

, I

i I

0.4

Fig. 8. Theoretical FLDs and experimentals, a quarter-hard copper (eu-tH). 1-80 = ('IT/2) ­
pt-Z, p = 0.4051; 2-80 = 1/10 - pt-Z,I/Io = 78° 59', p = 0.2176 (N' instead Qf N is used for the
curve 2); 3-normal anisotropy with fourth-order yield function, r = 0.74, X = 1.49, g = 0.5;
4-normal anisotropy with quadratic yield function, r = 0.74, g = 1.0; 5-S-R curve.

necessarily appropriate. In fact, as seen in the figures, denoting [(edcr]n=o by N', there
exist materials whose N' is comparatively greater than N (KS, RS), less than N (Al­
iH, Bs-O), or approximately equal to N (other metals). The theoretical curves due to
eqn (53) or (54) agree fairly well with the experimentals, even for the materials whose
N' has a great difference with N, though those due to other formulae show poor agree­
ment with the experimentals. Only one exception is Bs-O. Even for the materials whose
N' deviates much from N, if N' is used instead of N, the theoretical curves due to eqn
(53) or (54) are almost completely coincident with the experimentals, which is partic­
ularly seen for Bs-O.

All the S-R curves show very poor agreement with the experimentals in spite of
large scattering of them. All the figures demonstrate that FLDs due to our constitutive
equation (1) together with 8 0 expressed by eqn (10), or in eqn (54), can predict the
experiments much better than those due to S-R's theory.

brass-..!.H·4 .
N:0.321, r:0.946,
X: 1.07, (N':0.280)

0.2 0.2 0.4

Fig. 9. Theoretical FLDs and experimentals, a qUlgter-hard brass (Bs-tH). I-normal aniso­
tropy with fourth-order yield function, r = 0.946, X = 1.07, g = 0.5; 2-80 = ('IT/2) - pt-Z,
p = 0.772; 3-the same as 1 except g = 0.75; 4-80 = 1/10 - pt-Z,I/Io = 80° 38', p = 0.2394
(N' instead of N is used for the curve 4); 5-normal anisotropy with quadratic yield function,
r = 0.946, g = 1.0; S-R curve almost coincides with 5.
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N------

0.4

0.2

brass-O:
N:0.50,7:0.86,
( N': 0.267)

(-.

: ':-data after Tadros &. Mellor
"-)

o 0.2 0.4

Fig. 10. Theoretical FLDs and experimentals, a soft brass (Bs-O). 1-S-R curve (80 * 90°);
2-80 = 1\10 - pi2

, 1\10 = 81° 08', p = 0.03423; 3-S-R curve (80 = 68° 38') (N' instead of
N is used for the curves 2 and 3).

Table I. The half angle 8 0 of vertexed cone of
subsequent loading surface at onset of breakage

(calculation)

~ Strain ratio
~ 1-0

KS
RS

AI-O
AI-iH
Cu-!H
Bs-!H
8s-0

70°_85°
7r-88°
73°_85°
87°_89°
73°_86°
70°_82°
79°_80°

Table 1 shows the values of 8 0 (the half angle of the point-wise vertexed cone of
the subsequent loading surface at the loading point) at the onset of breakage of the all
materials tested here when eqn (53) or (54) is used. Note that 8 0 = (11"/2) means no
vertex, i.e. the subsequent loading surface is always smooth. As found from this table,
even at the time of breakage, 8 0 remains in the range of70°-90°. That is, our constitutive
equation predicts that any metal sheet will break with rather dull vertex of the sub­
sequent loading surface and thus, for continuing deformation of ordinary amount, the
evolution of the vertex is little. This can explain that it is difficult, as reported so far
by many workers, to check directly the vertex-formation on the subsequent loading
surface by the usual method of determination of the surface at the level of small strain.
Of course, even if its evolution is not prominent, the pointed vertex on the subsequent
loading surface at the loading point plays a decisive role in inducing local necking or
breakage.

7. CONCLUSION

The elastoplastic constitutive equation developed in the previous two papers of
this series is applied to determination of FLD (forming limit-strain diagram) of metal
sheets subjected to proportional loadings. First, the constitutive equation is reduced
to that for plane stress state, and then the formulae of the limiting strain or stress and
the direction of the local neck band are derived by making use of localized-type bi-
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furcation condition as the breakage condition. The formulae take different forms for
-1 ~ m ~ m* and m* ~ m ~ 1, where m denotes the stress ratio cr2/crl and Im I ~
1. For m* ~ m ~ 1, the neck band lies perpendicular to I-axis (the major stress axis).
Generally, 0 < m* ~ 0.5 holds and m* is very close to 0.5. The formulae for the case
where normal anisotropy (in-plane isotropy) expressed by Hill's quadratic yield func­
tion or by the author's fourth-order yield function are also given. For several com­
mercial sheet metals, theoretical FLDs are determined and illustrated to compare with
the experiments. It is found that FLD due to Storen and Rice's theory gives poor
quantitative prediction, that FLD due to our theory, which allows eo (= the half angle
of the point-wise vertexed subsequent loading surface at the loading point) to reduce
with deformation, gives a good quantitative prediction, and that the latter FLD is almost
completely coincident with the corresponding experimental one if Nt [= limiting major
strain (EI)cr at strain ratio n = 0] is adopted as the strain-hardening exponent instead
of N which is determined by uniaxial tensile test.

It is also pointed out that the value of eo remains within the range of 700 _900

throughout all the materials tested here even at the time of breakage and thus the
evolution of the vertex of the subsequent loading surface is very dull when stable
deformation continues at lower strain level. However, if such vertex-formation were
not assumed to occur, the localized bifurcation and thus breakage cannot take place
at reasonable stress or strain level.
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